
Solutions for Sample Questions for Midterm 2 (CS 421 Fall 2014)  

 
On the actual midterm, you will have plenty of space to put your answers. 

Some of these questions may be reused for the exam. 

 
1. Given a polymorphic type derivation for  

  {} |- let pair = fun x -> (x, x) in pair(pair 3) : ((int * int) * (int * int)) 

Solution: 
 

Let  Γ1 = {x : ‘a}. Γ2 = {pair : ∀’a. ‘a -> ‘a * ‘a}. 

The infixed data construct , (comma) has type ∀’a ‘b. ‘a -> ‘b -> ‘a * ‘b 

 

Let LeftTree = 

          Instance: ‘a → ‘a, ‘b → ‘a 

Const _______________________     Var _________ 

           Γ1 |- (,)  : ‘a -> ’a ->  ‘a * ‘a             Γ1 |-  x : ‘a  

  App ________________________________________   Var__________ 

                 Γ1 |- (,) x : ‘a -> ‘a * ‘a                                               Γ1 |- x : ‘a 

   App _______________________________________________________ 

                                             {x : ‘a}. |- (x, x) : ‘a * ‘a 

                               Fun ____________________________ 

                                        {} |- fun x -> (x,x) : ‘a -> ‘a * ‘a   

 

Let RightTree = 

                                                                                      Var __Instance: ‘a → int____    Const _________ 

                                                                                             Γ2 |- pair : int -> int * int                Γ2 |- 3 : int   

Var __Instance: ‘a → int * int________________    App  ____________________________________ 

        Γ2 |- pair : int * int -> ((int * int) * (int * int))                           Γ2 |- pair(3) : int * int 

App ____________________________________________________________________ 

                    {pair : ∀’a. ‘a -> ‘a * ‘a}|- pair(pair 3) : ((int * int) * (int * int)) 

 

 

Then the full proof is  

 

                             LeftTree                                     RightTree 

    ________________________________________________________ 

{} |- let pair = fun x -> (x, x) in pair(pair 3) : ((int * int) * (int * int)) 

 

2. Give a (most general) unifier for the following unification instance. Capital letters denote variables 

of unification. Show your work by listing the operation performed in each step of the unification and 

the result of that step.  

{X = f(g(x),W); h(y) = Y;  f(Z,x) = f(Y,W)} 

     

Solution:  
Unify {X = f(g(x),W); h(y) = Y;  f(Z,x) = f(Y,W)} 

= Unify {h(y) = Y; f(Z,x) = f(Y,W)} o {X → f(g(x),W)}      by eliminate  (X = f(g(x),W)) 



= Unify {Y = h(y); f(Z,x) = f(Y,W)} o {X → f(g(x),W)}      by orient  (h(y) = Y) 

= Unify {f(Z,x) = f(h(y),W)} o {X → f(g(x),W), Y → h(y)} by eliminate  (Y = h(y)) 

= Unify {Z = h(y); x=W} o {X → f(g(x),W), Y → h(y)}       by decompose  (f(Z,x) = f(h(y),W)) 

= Unify {x = W} o {X → f(g(x),W), Y → h(y), Z → h(y)}    by eliminate  (Z = h(y)) 

= Unify {W = x} o {X → f(g(x),W), Y → h(y), Z → h(y)}    by orient  (x = W) 

= Unify{} o {X → f(g(x),x), Y → h(y), Z → h(y), W → x}   by eliminate  (W = x) 

Answer: {X → f(g(x),x), Y → h(y), Z → h(y), W → x} 

 

 

3. For each of the following descriptions, give a regular expression over the alphabet {a,b,c}, and a 

regular grammar that generates the language described.  

a. The set of all strings over {a, b, c}, where each string has at most one a 

Solution:  (b ∨∨∨∨ c)*(a ∨∨∨∨ εεεε) (b ∨∨∨∨ c)* 

 <S> ::= b<S> | c<S> | a<NA> | εεεε 

<NA> ::= b<NA> | c<NA> | εεεε 
    

b. The set of all strings over {a, b, c}, where, in each string, every b is immediately followed by at 

least one c. 

Solution: (a ∨∨∨∨ c)*(bc(a ∨∨∨∨ c)*)* 

 <S> ::= a<S> | c<S> | b<C> | εεεε 

 <C> ::= c<S> 

 

c. The set of all strings over {a, b, c}, where every string has length a multiple of four. 

Solution: ((a ∨∨∨∨ b ∨∨∨∨ c) (a ∨∨∨∨ b ∨∨∨∨ c) (a ∨∨∨∨ b ∨∨∨∨ c) (a ∨∨∨∨ b ∨∨∨∨ c))* 

  <S> ::= a<TH> | b<TH> | c<TH> | εεεε 

  <TH> ::= a<TW> | b<TW> | c<TW> 

  <TW> ::= a<O> | b<O> | c<O> 

  <O> ::= a<S> | b<S> | c<S> 
4. Consider the following grammar:  

<S> ::= <A> | <A> <S>  

<A> ::= <Id> | ( <B>  

<B> ::=  <Id> ] |  <Id><B> | ( <B>  

<Id> ::= 0 | 1  

For each of the following strings, give a parse tree for the following expression as an <S>, if one 

exists, or write “No parse” otherwise:  

 

a. ( 0 1 ( 1 ] ( ( 1 0 ] 1 

Solution: 

                             <S> 

 

                          <A>                                         <S> 

 

  (  <B>                            <A>                         <S> 

 

  <Id>  <B>                           (              <B>                   <A> 

 



    0    <Id>  <B>                         (              <B>          <Id> 

 

                                          1          (            <B>                   <Id>       <B>             1 

 

                                                         <Id>       ]                        1      <Id>   ] 

 

                                                                                                            0 

b. 0 ( 1 0 ( 1 ]  

Solution: 

                             <S> 

 

                          <A>                                         <S> 

 

                          <Id>                                             <A> 

 

                           0                                    (             <B> 

 

                                                                  <Id>      <B> 

 

                                                                     1          <Id>         <B> 

 

                                                                                   0       (       <B> 

 

                                                                                                   <Id>      ] 

 

 

 

c. ( 0  ( 1 0 1]  0 ] 

Solution:  No parse tree 

5.  Demonstrate that the following grammar is ambiguous (Capitals are non-terminals, lowercase are 

terminals):  

S  →  A a B | B a A  

A  →  b | c  

B  →  a | b  

 

 

Solution:   String: bab 

 

 

                     S                                                                  S 

 

      A            a          B                                       B             a            A 

 

       b                         b                                      b                            b 

 

 

 



6. Write an unambiguous grammar generating the set of all strings over the alphabet    {0, 1, +, -} , 

where + and – are infixed operators which both associate to the left and such that + binds more 

tightly than -. 

 

         Solution: 
 

         <S> ::= <plus>  |  <S> - <plus> 

         <plus>  :: <id> | <plus> + <id> 

         <id> ::= 0 | 1 
 

7. Write a recursive descent parser for the following grammar:, 

<S> ::=  <N> % <S>  | <N> 

<N> ::= g <N> | a | b 

You should include a datatype token of tokens input into the parser, one or more datatypes 

representing the parse trees produced by parsing (the abstract syntax trees), and the function(s) 

to produce the abstract syntax trees.  Your parser should take a list of tokens as input and 

generate an abstract syntax tree corresponding to the parse of the input token list.  

Solution: 

type  token = ATk | BTk | GTk | PercentTk 

type  s = Percent of (n * s) | N_as_s of n 

and n = G of n | A | B 

 

let rec s_parse tokens  =  

    match n_parse tokens with (n, tokens_after_n) -> 

         (match tokens_after_n with PercentTk::tokens_after_percent -> 

                (match s_parse tokens_after_percent 

                 with (s, tokens_after_s) -> (Percent (n,s), tokens_after_s)) 

             | _ -> (N_as_s n, tokens_after_n)) 

and n_parse tokens = 

    match tokens 

    with GTk::tokens_after_g -> 

         (match n_parse tokens_after_g 

               with (n, tokens_after_n) -> (G n, tokens_after_n)) 

       | ATk::tokens_after_a -> (A, tokens_after_a) 

       | BTk::tokens_after_b -> (B, tokens_after_b) 

 

let parse tokens = 

    match s_parse tokens 

    with (s, []) -> s 

       | _ -> raise (Failure "No parse") 

     


